Automatic evaluation of blind fasteners installation

Mariluz Penalva
Tecnalia Industry \& Mobility

Brussels, 23/05/2023

TECNALIA is the largest applied research and technological development centre in Spain, a European benchmark and member of the Basque Research and Technology Alliance.

Transform technological research into prosperity.

To be the agents of change in companies and society, adapting them to the challenges of a
constantly evolving future.

We work with companies and institutions to increase their competitiveness, quality of life of people and achieve sustainable growth.

We are committed to results, always thinking about our clients and facilitating their activity with a close and useful service.

Smart Manufacturing

In a changing global scenario, we pursue an aim shared with manufacturing companies from all sectors, making a positive impact on their productivity while increasing the competitiveness of their businesses. To do so, we are committed to smart, flexible and sustainable manufacturing through digitalisation, automation and ecoefficiency as drivers of the change that transforms materials and manufacturing processes.

What can we do for you?

Industry 4.0

Advanced machines, automation and robotics

Decarbonisation of industry and the circular economy

New materials and manufacturing processes

Additive manufacturing

The drivers

- Assembly by mechanical joining is a relevant operation in the overall aircraft manufacturing cycle though heavily manual due to high flexibility requirements
- The need for automated assembly has increased over the last years
- Lower cost, shorter cycle times, higher precision, limited accessibility, people augmentation...
- The control of the quality of the joints is a major request in an automated environment
- Blind fasteners are originally conceived for closed structures and are installed just by accessing the front side of the assembly, leading to easier and cheaper automation solutions for any type of structure

Using Al to control blind fastening

- Achieving proper control of a tightening process is possible by understanding the relationship between torque and turn in the development of tension, aka installation diagram
- Blind fastening is dominated by
- Stochastic variables: complex mechanical system, batch variability
- Continuously varying conditions: material, thickness, fastener dash\&grip

By combining domain knowledge and several Al approaches Tecnalia has been working in the development of an automated evaluation of the quality of blind fasteners installations through several collaborations with industry

- Private contracts with Airbus Es
- Clean Sky 2 BLINDFAST project (ref. 686827) with Airbus De as Topic Manager
- On-going discussions with end-users, tiers-1 and OEMs

Materials and tests

- In-house holemaking \& fastening tests
- Monogram Composilok-II fasteners
- Aritex-Loxin fastening head to provide the torque-rev installation diagram
- NI platform for signals acquisition (1000 Hz)
- IR and video (286fps) images
- Holes \& fasteners quality checks according to specifications

tecnal:a

RCA

Aim. (1) Identify the conditions leading to different defect installations, (2) Gain any other domain knowledge
Main conclusion. How important are grip conditions (thickness, code) on the installation and diagram produced, either OK/NOK

[^0]
tecnal:a

Test program

- Both OK/NOK installations generated under different grip conditions
- Monogram Composilok-II, dash 5
- Iterations and batch effect included
- Over 400 installations

Material	Fastener	Dash	Grip code	Batch	Grip range
AA2024 T3	CL-II	5	$300 / 350 / 400$	A,B	$0 / \mathrm{S} / \mathrm{M} / \mathrm{L}$

Sol\#1

"Classify different OK/NOK grip condition groups through time, frequency domain descriptors of the installation diagram evolution and different ML algorithms"

+ Good overall scores in classifying the groups with different algorithms
- Uncontrolled NOK group that cannot be replicated (highly unbalanced class)

\#GROUP	SELECTION-INSTALLATION	\# SAMPLES
1	AIR-NO INSTALLED	60
2	LARGE SELECTED-OK INSTALLED	0
3	LARGE SELECTED-NOK INSTALLED	120
4	NOK SELECTED-OK INSTALLED	53
5	NOK SELECTED-NOK INSTALLED	47
6	OK SELECTED-OK INSTALLED	96
7	OK SELECTED-NOK INSTALLED	4
8	SMALL SELECTED-OK INSTALLED	0
9	SMALL SELECTED-NOK INSTALLED	20
$\mathbf{1 1}$		

tecnal:a

MEMER OFF RASOUE RESEARCH
QTECHNOLOGY ALLANCE

Sol\#2

"OK/NOK classification by coding the installation diagrams into images (MTF, polar coordinates transformations) and DL (CNN)"

+ Use of robust classification algorithms
- Small volume of data (400 installations), overfitting highly likely
©
Torque-RPM Installation diagram

TP	TN	FP	FN	Precision	Accuracy
8	11	1	0	0.89	0.95

tecnal:a

MEMER Of basaue reseach
RTECHNOLOGY MLIANCE

Sol\#3

"Analyze the process chain by clustering using the holes/fasteners quality checks and visualize possible relationships between them, namely defect transmission paths"

- No conclusive results so far

tecnal:a

MEMBER of Basaue Research
RTECHNOLOGY ALILANEE

Sol\#4

"Unsupervised classification of OK/NOK installations using time-domain descriptors to skip time-consuming, and eventually unrealistic data labelling"
+/- Some good predictions results though not high as with labelled data

Summary, conclusions and outlook

- Automatic evaluation of mechanical joints is an important step towards assembly automation in the aerospace industry
- Blind fastening is particularly suitable for automated assembly
- The fastener torque-rev diagram is a simple but powerful source of information for installations evaluation
- Aerospace fastening is a complex operation dominated by varying conditions and random variables where uncontrolled defects can appear
- Tecnalia is working in industry oriented solutions that combine domain knowledge with AI techniques such as ML, DL and unsupervised clustering
- Challenges include uncontrolled defects, constraints in data labelling, unbalanced data
- Foreseen steps forward address data augmentation, real time execution

Thank you!

Questions are welcome

mariluz.penalva@tecnalia.com

[^0]: CL-II-6-500 /Grip range [11,43; 12,7mm] | Formed head limits (Jmin 7;62mṇ̃; Kmax 8,89mm)

